

АТОМНАЯ ОТРАСЛЬ КАЗАХСТАНА. ДОСТИЖЕНИЯ И ПЕРСПЕКТИВЫ.

И.Л. Тажибаева, ЯОК Круглый стол «80 лет атомной отрасли»

АТОМНАЯ ОТРАСЛЬ КАЗАХСТАНА

- 1. Урановая промышленность (разведка, добыча, производство таблеток и ТВС)
- 2. Опыт эксплуатации РУ БН-350 МАЭК
- 3. Научно- исследовательские центры (реакторные и ускорительные комплексы, экспериментальные стенды)
- 4. Планы по строительству первой АЭС и ядерного кластера в РК
- 5. Подготовка кадров для отрасли

Атомная промышленность Казахстана- НАК Казатомпром

Казахстан занимает второе место в мире по разведанным запасам и первое место по добыче природного урана.

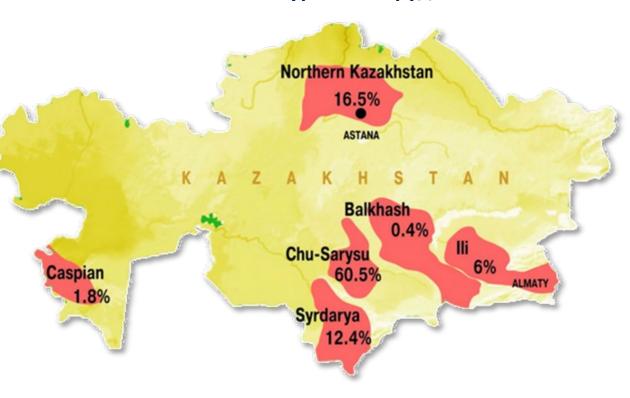
Добыча урана проводится методом подземного скважинного выщелачивания.

Экспорт в Китай, Францию, Россию, Индию, США и Канаду.

Добыча урана является начальной стадией ядерного топливного цикла. Казахстан сохраняет присутствие в других стадиях ядерного топливного цикла.

НАК Казатомпром — работает около 22 тысяч сотрудников на 36 дочерних и зависимых производственных объектах в 5 регионах РК. НАК является национальным оператором по импорту-экспорту урана, редких металлов и ядерного топлива для АЭС, специального оборудования и технологий.

Добыча урана – 15 компаний,


ЯТЦ и металлургия -4 компании

Производственно-вспомогательный комплекс- 9 компаний, включая Волковгеологию (поиск и разведка урана, ввод в эксплуатацию месторождений)

Атомная и альтернативная энергетика— 1 (ТОО Уранэнерго)

Наука, инжиниринг и образование -1 (ИВТ)

Залежи урановой руды

Шесть урановорудных провинций:

Шу-Сарысуйская, Сырдарьинская, Северо-Казахстанская, Прикаспийская, Прибалхашская, Илийская.

УРАНОВАЯ ПРОМЫШЛЕННОСТЬ

№1 В МИРЕ ПО ДОБЫЧИ УРАНА

доля мировой добычи **≈40**%

№2 В МИРЕ ПО ЗАПАСАМ УРАНА

доля мировых запасов

≈14%

21,1 тыс. тонн 2023 год

Более 900 ТЫС.

ТОНН подтвержденных запасов

ПРОИЗВОДСТВО ТОПЛИВНЫХ ТАБЛЕТОК АО «УЛЬБИНСКИЙ МЕТАЛЛУРГИЧЕСКИЙ ЗАВОД»

ПРОИЗВОДСТВО ЯДЕРНОГО ТОПЛИВА ДЛЯ АЭС

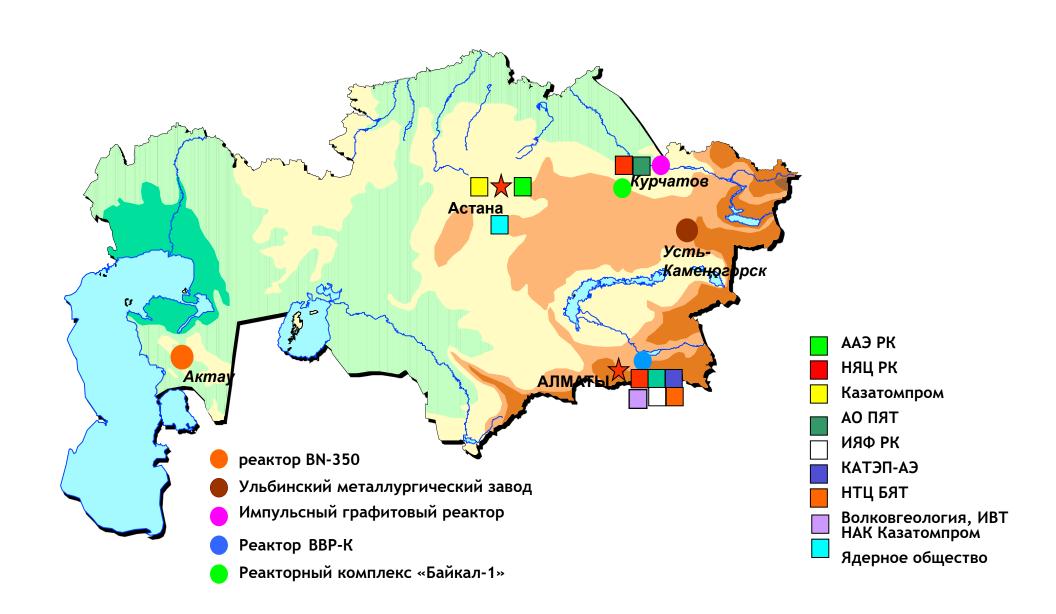
ТОО «Ульба ТВС» (ТВС для реакторов китайского дизайна по французской технологии)

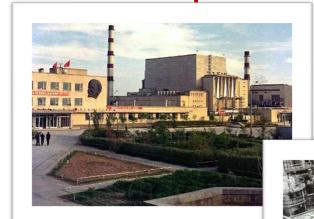
Завод по производству тепловыделяющих сборок

Первая поставка ТВС осуществлена в конце 2022 года

Банк низкообогащенного урана МАГАТЭ

Банк НОУ МАГАТЭ располагается на территории АО «Ульбинский металлургический завод», г. Усть-Каменогорск. Ульбинский металлургический завод (УМЗ) — предприятие, которое около 60 лет работает с ядерными материалами и является лицензированным ядерным объектом, охраняемым Нац.гвардией. Здесь есть вся необходимая инфраструктура для хранения, обработки и транспортировки НОУ, и, соответственно, специалисты необходимой квалификации.


Банк существует за счет добровольных взносов. К примеру, сейчас это \$150 млн, выделенных такими донорами как Фонд "Инициатива по сокращению ядерной угрозы", США, ЕС, ОАЭ, Кувейт, Норвегия и сам Казахстан. Наша страна выделила \$400 тысяч и взносы в натуральной форме. Ожидается, что собранных 150 млн хватит на ближайшие 10 лет.


Предпосылки для создания и развития атомной энергетики в Казахстане

- —Нарастающий дефицит в выработке электроэнергии по регионам, особенно на юге страны, и в целом по Казахстану. Необходимость диверсификации в выработке электроэнергии и тепла.
- □Наличие правовой базы и структуры управления атомной отраслью.
- □Значительное количество разведанных запасов урана.
- наличие развитой уранодобывающей и перерабатывающей промышленности,
 производства топлива и конструкционных материалов для ядерных энергетических реакторов.
- □Доктрина (стратегия) достижения углеродной нейтральности Республики Казахстан до 2060.
- □ Необходимость перехода к безуглеродной энергетике, соблюдение Парижского Соглашения, оплата налогов за «углеродный» след при экспорте товаров в ЕС.
- □Опыт эксплуатации энергетического реактора БН-350 и исследовательских реакторов ИВГ 1М, ИГР, РА и ВВР-К, наличие атомной науки и базовых экспериментальных установок.

Ядерные установки и организации Казахстана

РЕАКТОР НА БЫСТРЫХ НЕЙТРОНАХ БН-350. ОПЫТ ЭКСПЛУАТАЦИИ

БН-350 - первый в мире многоцелевой энергетический реактор на быстрых нейтронах с натриевым теплоносителем, предназначенный для выработки электричества, тепла, опреснения морской воды и наработки плутония

Суммарная электрическая мощность 350 МВт.

Проектная тепловая мощность реактора 1000 МВт.

Физический пуск - 29.11.1972

Энергетический пуск - 16.07.1973

Реактор остановлен - 16.03.1998

Решение о выводе из эксплуатации- Постановление Правительства РК No. 456 от.22. 04.1999

СТРАТЕГИЯ ВЫВОДА ИЗ ЭКСПЛУАТАЦИИ РУ БН-350

Стадия 1. Приведение в состояние долговременного безопасного хранения (SAFESTORE)

Критерии завершения стадии	Текущий статус
ОЯТ выгружается из реактора, упаковывается в герметичные контейнеры, загружается в специальные контейнеры и вывозится с БН-350 на площадку длительного хранения.	Выполнено. ОЯТ было выгружено из реактора и помещено на площадку БАЙКАЛ-1 НЯЦ РК для длительного хранения.
Натриевый теплоноситель удаляется из корпуса реактора, первого и второго контуров, перерабатывается, радиоактивные продукты переработки отправляются на длительное хранение.	Только натрий второго контура был удален с реакторной площадки. Натрий в 1-м контуре очищен от изотопов цезия и слит в резервуары для хранения. Разработана технология и удалены остатки натрия из корпуса и петель. Разработаны проект и технология переработки Na и сплава Na-K. Построено здание, смонтировано оборудование, введена в эксплуатацию УПН, переработана суточная емкость с натрием 2-го контура.
Радиоактивные отходы (ЖРО и ТРО) переработаны и размещены на долговременное хранение.	Проект и ПСД разработаны , но не реализованы.
Обеспечивается радиационный контроль реактора БН-350, санитарно-защитной зоны и зоны наблюдения.	Проекты разработаны , в процессе реализации.
Определен состав систем и оборудования, оставленных в эксплуатации, демонтированных и законсервированных.	Разработка проектов не закончена.
Выполнены работы по демонтажу и консервации РУ	Частично выполнено по локальным проектам

СТРАТЕГИЯ ВЫВОДА ИЗ ЭКСПЛУАТАЦИИ РУ БН-350

Стадия 2. Долговременное хранение под наблюдением

Критерии завершения стадии	Текущий статус
Срок долговременного хранения 50 лет истекает	
Принято решение о начале работ по реализации проекта по демонтажу оборудования и утилизации отходов.	

Стадия 3. Частичный или полный демонтаж оборудования, зданий, сооружений, хранилищ отходов

Критерии завершения стадии	Текущий статус
Частичный или полный демонтаж оборудования, зданий и сооружений, полная	
дезактивация и реабилитация территории.	

Опыт эксплуатации РУ БН-350 - безопасный, безаварийный. Планируется создание международного демонстрационного центра под эгидой МАГАТЭ по выводу из эксплуатации реакторов на быстрых нейтронах.

ИССЛЕДОВАТЕЛЬСКИЕ РЕАКТОРЫ И УСКОРИТЕЛИ РК

Реактор ИВГ.1М.

Ускоритель тяжелых ионов ДЦ-60

Реактор ИГР

Изохронный циклотрон У-150 М

Реактор ВВР-К

Электростатический перезарядный ускоритель УКП-2-1

НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РК

НЯЦ РК создан на базе предприятий бывшего Семипалатинского испытательного полигона (СИП), г. Курчатов. В структуру входят головной офис и 4 филиала:

Институт атомной энергии (ИАЭ) –исследования в области ядерной и термоядерной энергетики, разработка новых технологий

Институт радиационной безопасности и экологии (ИРБЭ)радиационный мониторинг СИП и окружающих территорий, радиационная экология

Институт геофизических исследований (ИГИ)-сейсмическая безопасность, мониторинг ядерных испытаний, поддержка режимог ядерного нераспространения

Предприятие Байкал – вспомогательное предприятие

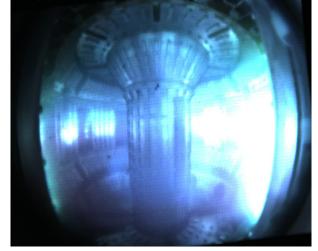
В НЯЦ работает около 2000 человек, работает 2 исследовательских реактора (ИВГ 1М и ИГР), материаловедческий токамак КТМ, экспериментальны стенды (ИГЛ, АНГАРА и др., плазменно-пучковая установка ППУ для моделирования взаимодействия плазмы с поверхностью конструкционных материалов ТЯР, создан центр технологических компетенций в сфере водородной энергетики.

Исследовательские реакторы и ускорители РК

Задачи исследований:

- 1. Исследования в обосновании безопасности атомной энергетики. Моделирование аварийных ситуаций потери теплоносителя в реакторе.
- 2. Конверсия реакторов переход на низкообогащенное топливо.
- 3. Исследования по физике плазмы и взаимодействию плазмастенка
- 4. Исследования поведения материалов ядерных и термоядерных реакторов, облученных на реакторе и/или ускорителе.
- 5. Нейтронно-активационный анализ.
- 6. Легирование кремния.
- 7. Производство изотопов для промышленности и медицины.

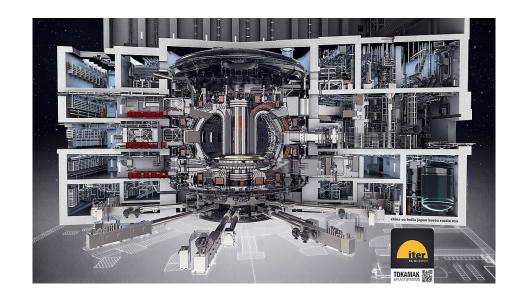
ТЕРМОЯДЕРНЫЙ СИНТЕЗ. ТОКАМАК КТМ


КТМ - первый в мире специализированный токамак для исследования и испытаний перспективных материалов ТЯР, обращенных к плазме, расположен в НЯЦ РК, г.Курчатов.

Первая плазма -2017 год Физический пуск и ввод в эксплуатацию- 2019 г.

Задачи токамака КТМ:

- Создание уникальной исследовательской и испытательной базы для разработки материалов и соответствующих технологий термоядерных реакторов (ИТЭР и ДЭМО), а также узлов и элементов реакторных камер;
- Исследования принципиальных плазмофизических характеристик компактных токамаков как термоядерной составляющей гибридных реакторов для наработки искусственного ядерного топлива, утилизации долгоживущих высокоактивных отходов ядерной энергетики деления и, возможно, для производства электроэнергии в подкритических системах;
- Отработка высокоресурсных конструкций дивертора и первой стенки, режимов ВЧ-нагрева и генерации неиндуктивного тока в интересах ИТЭР и ДЭМО;
- Организация международной лаборатории, как центра международного сотрудничества с Россией, странами СНГ, ЕС, США, Японией, Китаем и Южной Кореей.



Сотрудничество с организацией ИТЭР

В рамках мероприятий ЭКСПО-2017 Подписано Соглашение о научно-техническом сотрудничестве между НЯЦ РК и Организацией ИТЭР, 11 июня 2017 г., Астана. Соглашение Организация ИТЭР-НЯЦ РК актуализировано и подписано в г Кадараш (Франция) вновь в июне 2025 года.

Исследования по реализации Соглашения:

- влияние реакторного излучения на характеристики оптоволокна и оптоволоконных датчиков температуры, используемых в реакторе ИТЭР;
- оценка нейтронной активации бетона в реакторе для прогнозирования и определения диаграмм мощности дози облучения после остановки и вывода реактора ИТЭР из эксплуатации;
- реакторное облучению внутрикамерной катушки индуктивности реактора ИТЭР.

институт ядерной физики

В ИЯФ РК работает более 700 сотрудников. В состав входят 22 научно-исследовательских лаборатории и 3 научно-технических центра с современным аналитическим и экспериментальным оборудованием, а также 2 учебных центра.

Имеет большой опыт создания наукоемких технологий, значительная часть которых внедрена в производство.

Развиваются следующие технологические направления:

- производство радиоизотопной продукции
- радиационная обработка материалов
- ядерно-физические методы анализа
- мониторинг и реабилитация окружающей среды
- обращение с ядерными материалами, источниками ионизирующего излучения и радиоактивными отходами

Исследовательский реактор ВВР-К

9 ядерных, радиационных, электрофизических установок

Производство изотопов. Перечень продукции и услуг

1. На реакторе ВВР-К ИЯФ РК налажено производство следующих изотопов:

2. Ускорители У-150М и С-30 ИЯФ РК используются для производства изотопов:

```
<sup>201</sup>Tl, <sup>67</sup>Ga, <sup>18</sup>F, <sup>57</sup>Co, <sup>55</sup>Fe, <sup>85</sup>Sr, <sup>109</sup>Cd, <sup>68</sup>Ge
```

- 1. «Натрия пертехнетат ^{99m}Tc»
- 2. «Натрия йодид ¹³¹I» для диагностики и для терапии
- 3. «Фтордезоксиглюкоза ¹⁸F»
- 4. «K-Cd -109»
- 5. «K-Ra-226»
- 6. «ИРИД -¹⁹²lr»
- 7. «ИРИТ-²⁰⁴Tl»
- 8. «ИГИ-Cy-¹²⁴Sb»
- 9. «Маркер ⁶⁰Co»
- 10. «Раствор для исследований ⁸⁵Sr»
- 11. «Раствор для исследований ¹³⁴Cs»
- 12. «Раствор для исследований ¹³¹I»
- 13. «Балк-раствор ⁵⁷Co»
- 14. «Балк-раствор ¹⁰⁹Cd»
- 15. Наработка изотопов 192Ir, 198Au из материала заказчика и поставка поставщикам в Японию
- 16. Переампулирование источников с целью продления сроков эксплуатации источников с 137Cs, 238Pu/Be, 241Am/Be и др.

Перспективы развития производства радиофарм

препаратов

Государственная регистрация доклинические и клинические испытания уже разработанных РФП:

- 1. Регистрация наборов реагентов к 99mTc:
- «99mTc-ДТПА» набор реагентов к технецию для диагностики заболеваний почек;
- «99mTc-фитат» набор реагентов к технецию для диагностики заболеваний печени;
- «99mTc-MДФ» набор реагентов к технецию для диагностики заболеваний скелета.
- 2. Клинические испытания РФП: «153Sm ЭДТМФ» для паллиативного лечения костных метастазов при различной локализации опухоли;

Разработка и внедрение новых технологий производства радиоизотопной продукции:

- «18F-Фтор-L-тирозин» для определения скорости пролиферации раковых клеток методом ПЭТ;
- «Натрия фторид 18F» для диагностики метастазов в кости при онкозаболеваниях различной этиологии
- «Элаголикс-177Lu» для терапии трижды негативного рака молочной железы
- 177Lu-ДОТА-ТАТЕ» для терапии нейроэндокринных опухолей.

Начата работа над разработкой препаратов для тераностики заболеваний предстательной железы на основе [18F,99mTc, 177Lu]-ПСМА (простатический специфический мембранный антиген).

Увеличение поставок РФП «Натрий йодид 131» для лечения заболеваний щитовидной железы.

Подготовка кадров для атомной энергетики

ВКГУ

КазНУ

ЕНУ

МФФМ

НЯЦ РК

ИЯФ РК

СГУ

нияу мифи

- 1. Ядерные реакторы и материалы
- 2. Ядерная физика и технологии
- 3. Физика плазмы
- 4. Материаловедение и технологии
- 5. АЭС: проектирование, эксплуатация, инжиниринг
- 6. Ядерная энергетика и теплофизика

ВОСТОЧНО-КАЗАХСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

- 1. Физика
- 2. Химия
- 3. Прикладная математика

КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. АЛЬ-ФАРАБИ

- 1. Ядерная физика
- 2. Физика плазмы
- 3.Ядерная инженерия
- 4.Открыт филиал НИЯУ МИФИ

ЕВРАЗИЙСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. Л.Н. ГУМИЛЕВА

- 1. Физика
- 2. Механика

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

- 1. Ядерные реакторы и энергетические установки
- 2. Электроника и автоматика энергетических установок

3. Ядерная физика НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

- 1. Ядерная физика
- 2. Экспериментальная физика

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

- 1. Электрофизические установки и ускорители
- 2. Физика

АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ

- 1. Электроэнергетика и теплоэнергетика
- 2. Автоматизация и управление
- 3.Электроэнергетические системы
- 4.Инженерная экология и безопасность в энергетике

СЕМИПАЛАТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. ШАКАРИМА

1. Техническая физика

АУЭиС

НГУ

Компоненты программы подготовки кадров для атомной отрасли

- 1. Обучение работников и физических лиц, за счет средств лицензионно-контрактных условий (ежегодно 350 чел.)
- 2. Функционирование Научно-образовательного центра на базе КазНИТУ им. К.И. Сатпаева «МЕНОЦАП» (подготовка по профилю атомной отрасли)
- **3. Открытие новых специальностей, профессий** (Инновационные технологии получения урановой продукции, Материалы ядерной энергетики, аппаратчик-аффинажного произ-ва, аппаратчик ТВС)
- 4. Увеличение научных сотрудников и докторского состава
- 5. Дуальное обучение

- 1. Организация обучения на основании индивидуальных планов развития работников по результатам ежегодной оценки компетенций работников (точечное обучение)
- 2. Развитие функциональных пулов (кадровый резерв)
- **3.** Принципы самообучающейся организации (E-learning, дистанционное обучение, на рабочем месте)
- 4. Менторство/коучинг
- 5. Управление преемственностью

- 1. Ротация сотрудников между АО «НАК «Казатомпром» и его предприятиями
- **2.** Программы развития молодых специалистов «Жас-Оркен», «Ізбасар» и «Цифровое лето» (стажировка, трудоустройство)
- 3. Совет ветеранов «Ақсақалдар кеңесі» (передача уникальных знаний)
- 4. Внутреннее тренерство (мастер-классы, каскадирование обучения)
- 5. Институт наставничества

ЭНЕРГЕТИЧЕСКИЙ БАЛАНС ДО 2035 ГОДА

ЭНЕРГЕТИЧЕСКИЙ БАЛАНС ДО 2035 ГОДА

К 2035 году будет введено 26,5 ГВТ новой генерации.

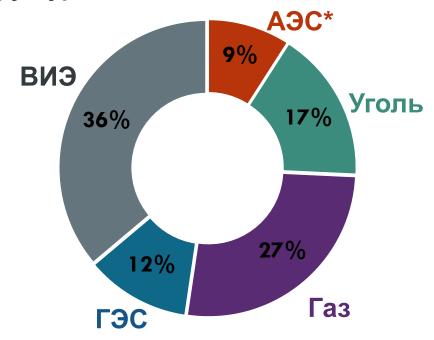
9550 MB_T

виэ

7121 MBT

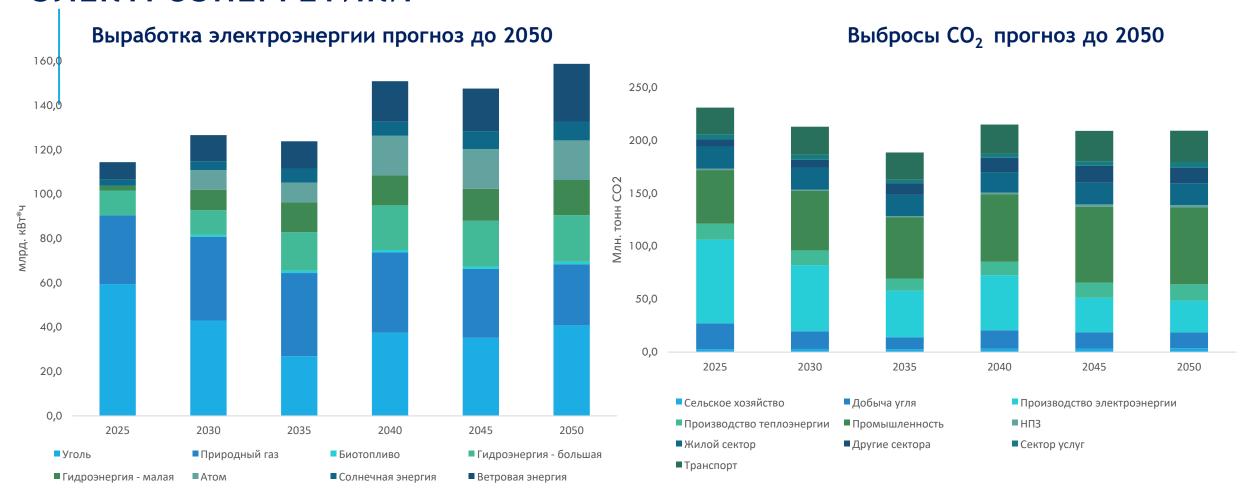
ГА3

2400 MBT


АЭС

4404 MBT

УГОЛЬ



Структура новых мощностей до 2035 г.

- Износ большинства станций > 70%
- Угольные станции 70%
- Ежегодный рост потребления электроэнергии ~ 3%

МОДЕЛИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ РАЗВИТИЯ ЭЛЕКТРОЭНЕРГЕТИКИ

Для реализации перехода на «безуглеродную» энергетику необходимо:

Строительство АЭС и доступность ресурсов природного газа. Увеличение вклада ВИЭ.

Снижение удельных средних выбросов углекислого газа при производстве электроэнергии с 780 г $CO_2/\kappa B \tau^* 4 = 2020$ году до 215 г $CO_2/\kappa B \tau^* 4 = 2050$ году.

ЭЛЕМЕНТЫ ЯДЕРНОЙ ИНФРАСТРУКТУРЫ В РК

Созданы следующие элементы ядерной инфраструктуры:

- •Принят обновленный Закон об использовании атомной энергии», в стадии согласования новый закон РК «Об обращении с РАО»
- •Казахстан стал участником основных международных конвенций и соглашений в области использования атомной энергии в мирных целях. Имеет достаточно хорошо развитию законодательную базу.
- •Создано Агентство по атомной энергии РК несущее всю полноту ответственности как государственный орган за создание и поддержание на необходимом уровне всей ядерной инфраструктуры в стране. В регулируемые сферы деятельности ААЭ РК входит мирное использование атомной энергии, обеспечение ядерной, радиационной и ядерной физической безопасности объектов использования атомной энергии, радиационной безопасности населения
- •Создан регуляторный орган Комитет атомного надзора и контроля при ААЭ РК. Имеются организации технической поддержки регулятора.
- •. Озвучен регион (район) строительства будущей АЭС.
- •Сделаны расчеты и проведен соответствующий анализ потребностей в электроэнергии до 2035 года.

ШОРТ-ЛИСТ ПОСТАВЩИКОВ РЕАКТОРНОЙ ТЕХНОЛОГИИ

Реактор

HPR1000

APR1400

BB3P-1200

EPR1200

Мощность

1200 MBT

1400 MBT

1200 MBT

1200 MBT

Количество реакторов в процессе строительства

11 реакторов

4 реактора

19 реакторов

3 реактора

Для сравнительного анализа и оценки ядерно-энергетических технологий совместно с французской компанией «Assystem» разработана система критериев на основе рекомендаций документов МАГАТЭ

ВЫБОР РАЙОНА РАЗМЕЩЕНИЯ АЭС

ТЕКУЩЕЕ СОСТОЯНИЕ И ПОСЛЕДУЮЩИЕ ЭТАПЫ СТРОИТЕЛЬСТВА АЭС В РК

- 1.Проведен референдум (7 октября 2024 г). 71% высказались за поддержку строительства АЭС в РК.
- 2. Постановлением Правительства РК 30 декабря 2024 года утвержден район размещение первой АЭС в РК Жамбыльский район Алматинской области
- 2.ГК РОСАТОМ выбран лидером международного консорциума по строительству первой АЭС в РК на основании методологии выбора, разработанной совместно с ААЭ РК, ТОО КАЭС, французской компанией «Assystem. Итоги анализа были представлены на рассмотрение Межведомственной комиссии по вопросам развития атомной отрасли, которая определила наиболее оптимальные и выгодные предложения. Лучшие предложение были получены от ГК Росатом, затем идет китайская CNNC, которая потенциально может быть лидером консорциума по строительству второй АЭС в РК.
- 3. На Петербургском международном экономическом форуме утверждена и подписана (РОСАТОМ и ААЭ РК) индикативная дорожная карта, предусматривающая этапы подготовки и реализации проекта, включая проведение инженерно-изыскательских работ, заключение EPC-контракта и разработку проектной документации. ТОО «Казахстанские атомные электрические станции» (ТОО «КАЭС») и АО «Атомстройэкспорт» подписали рамочное соглашение, которое определяет ключевые принципы сотрудничества.

Необходимо:

- 1. Выбрать площадку строительства АЭС на основе комплексных инженерных исследований. (исследование не менее 3х возможных площадок)
- 2. Постановление Правительства РК по выбору площадки
- 3. Подписание межправительственного Соглашение РК-РФ.
- 4. Разработка ТЭО, ПСД, проведение Госэкспертизы проекта, начало строительства