Радионуклиды в ядерной медицине

Ядерная медицина - раздел клинической медицины, который занимается применением радионуклидных фармацевтических препаратов в диагностике и лечении. Иногда к ядерной медицине относят также методы дистанционной лучевой терапии.

Ядерная медицина применяется в следующих областях: кардиология - 46% от общего числа диагностических исследований, онкология - 34%,

неврология - 10%.

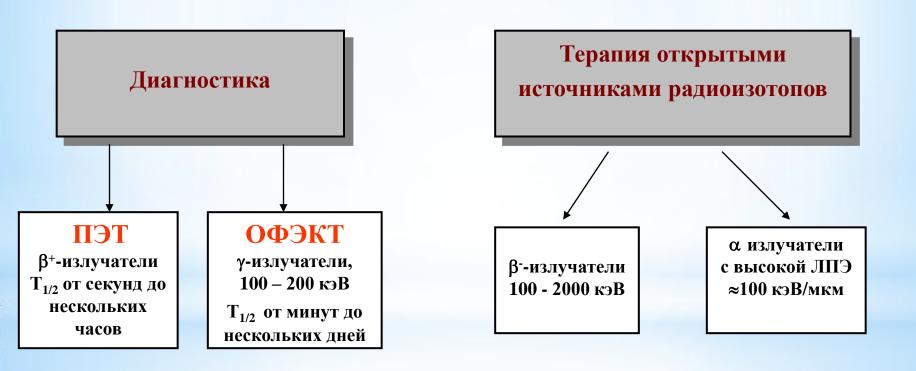
В онкологии (радиобиология опухолей) ядерная медицина выполняет такие задачи, как выявление опухолей, метастазов и рецидивов, определение степени распространённости опухолевого процесса, дифференциальная диагностика, лечение опухолевых образований и оценка эффективности противоопухолевой терапии.

Разделы ядерной медицины

 Радиоизотопная диагностика
 - визуализации патологических

 процессов в организме радиофармпрепаратов (РФП).
 человека с использованием

Радиоизотопная терапия - использование открытых источников β- и α-излучений для создания высоких доз облучения в органемишени без повреждения окружающих нормальных тканей.

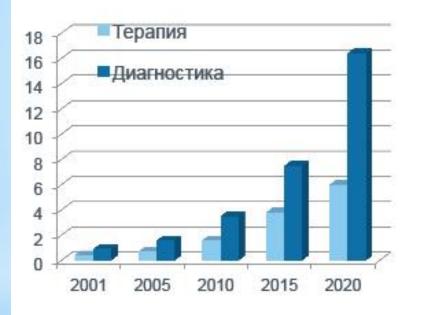

Лучевая терапия - применение высокоэнергетических электронов, протонов, нейтронов и гамма-квантов для "выжигания" раковых опухолей на ранних стадиях заболевания.

Современная радионуклидная диагностика основана на регистрации γ-квантов либо испускаемых непосредственно радиоактивными нуклидами при их распаде (сцинтиграфия, ОФЭКТ), либо образующихся при взаимодействии позитронов, испускаемых радионуклидом, с электронами окружающих атомов (ПЭТ).

Первым радионуклидом для медицины был ¹³¹I, который получали или из смеси продуктов деления урана, или из облученного медленными нейтронами теллура.

В настоящее время радионуклиды чаще всего получают с помощью использования генераторов - переносных устройств с локальной радиационной защитой для быстрого получения короткоживущих радионуклидов в условиях медицинского учреждения. Принцип работы генератора основывается на том, что распад некоторых нестабильных элементов заканчивается не образованием стабильного изотопа, а созданием дочернего, нового нестабильного элемента.

Радиоизотопы для ядерной медицины



Хронология применения радионуклидов в медицине

Радионуклид		Заболевание	Дата первого применения
	³² P	Миелопролиферативные заболевания	1936
	³² P	Лимфопролиферативные заболевания	1938
	$^{32}\mathbf{P}$	Костная боль	1937
	⁸⁹ Sr	Метастазы рака в кости	1941
	131 I	Рак щитовидной железы	1944
		Публикация в Science объявления о поставках радиоактивных изотопов	14 июня 1946 г.
		первая официальная поставка 1 мкКи ¹⁴ С	2 августа 1946 г.

Мировое производство и потребление радиофармацевтических препаратов

Прогноз объемов потребления РФП в мире, млрд.\$/год

По прогнозам аналитиков доходы рынка РФП в США к 2020 г. могут возрасти в 20 раз по сравнению с 2000 г. и составить **более 20 млрд. долл.** к 2020 г.

Мировое производство и потребление РФП растет ежегодно

на 10-15 %

Согласно Федеральному закону РФ от 12 апреля 2010 г. N 61-ФЗ "Об обращении лекарственных средств» все вновь создаваемые предприятия по производству лекарственных средств должны соответствовать требованиям ГОСТ Р 52249-2009 (стандарт идентичен Правилам GMP — EC Guide to Good Manufacturing Practice for Medicinal Products).

Радионуклидная диагностика

Диагностические радионуклиды

ПЭТ

β+-излучатели

¹¹C, ¹³N, ¹⁵O, ¹⁸F, ⁶⁸Ga, ⁸²Rb

³⁸K, ³⁰P, ^{62,64}Cu, ⁶³Zn, ^{122,124}I

Радионуклидная **диагностика**

ОФЭКТ

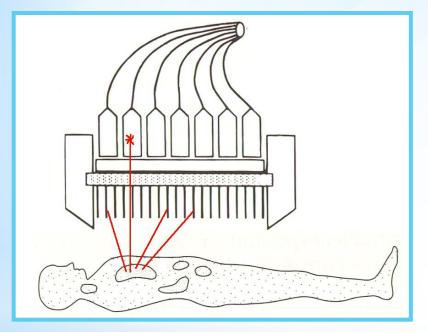
у-излучатели

99mTc, ¹¹¹In, ¹²³I, ²⁰¹Tl

⁵¹Cr, ⁵⁹Fe, ⁶⁷Ga, ^{81m}Kr, ¹³¹I, ¹⁹⁸Au

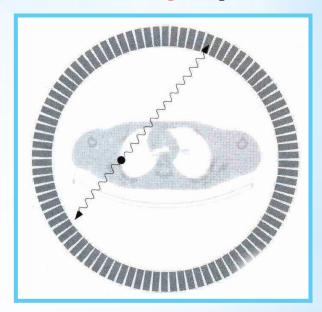
Диагностическое использование РФП

Возможности


- оценка функционального состояния различных органов и систем, патологических состояний;
- оценка эффективности проводимого лечения.

Преимущества

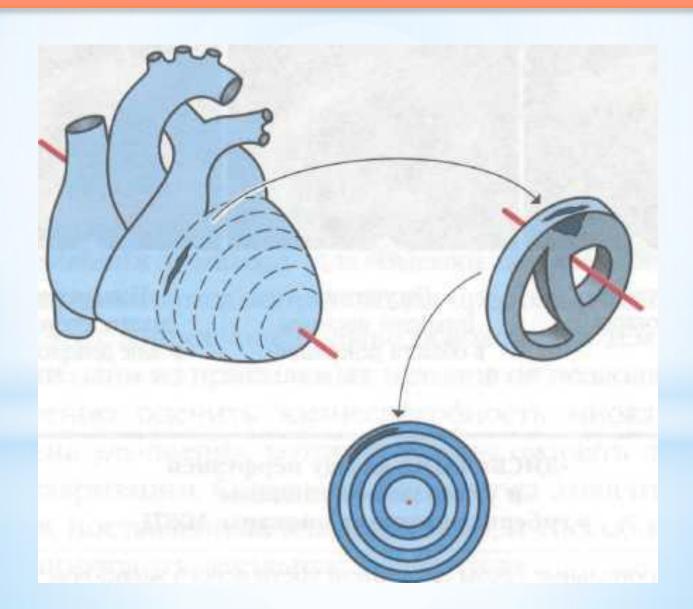
- эффективное выявление функциональных нарушений органов и систем, начиная с ранних стадий заболевания, до развития патологоанатомических проявлений;
- лучевая нагрузка на пациента значительно ниже, чем при традиционном рентгенологическом обследовании.


Принципы регистрации ү-квантов при ОФЭКТ и ПЭТ

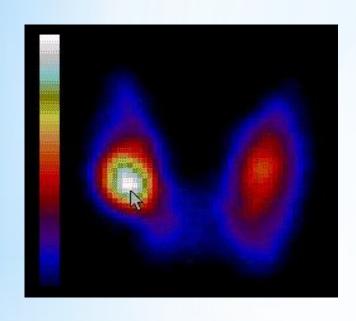
атом радиоактивного нуклида
$$ightharpoonup$$
 стабильный атом + γ -квант $ho_9^{99} Mo
ightharpoonup ^{99} Tc
ightharpoonup ^{99} Ru$

Гамма-сцинтиграфия и ОФЭКТ основаны на регистрации гамма-квантов, испускаемых находящимися внутри пациента радиоактивными веществами (РФП)

Протон ядра \longrightarrow позитрон (+) + нейтрино (0) + нейтрон (0); далее в организме происходит взаимодействие позитрона с электроном электронной оболочки атомов: позитрон (+) + электрон (—) \longrightarrow γ -квант + γ -квант. $^{18}F \longrightarrow ^{18}O$



Принцип ПЭТ основан на регистрации противоположно направленных потоков высокоэнергетических гаммаквантов, образующихся при аннигиляции позитрона РФП и электрона внешней среды

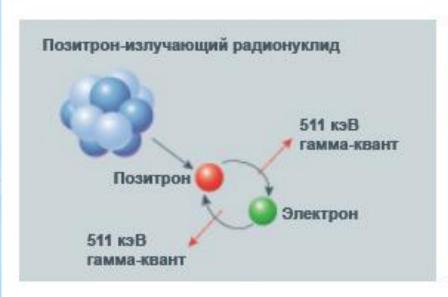


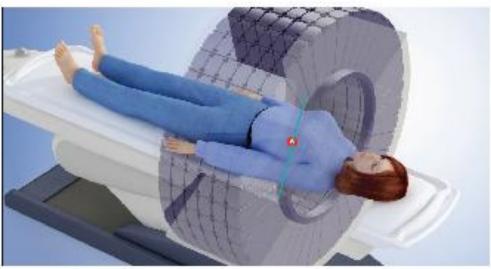
Однофотонный эмиссионный компьютерный томограф фирмы TRIONIX (США).

Плоскостное изображение суммарной информации всех срезов по длинной оси сердца (ОФЭКТ)

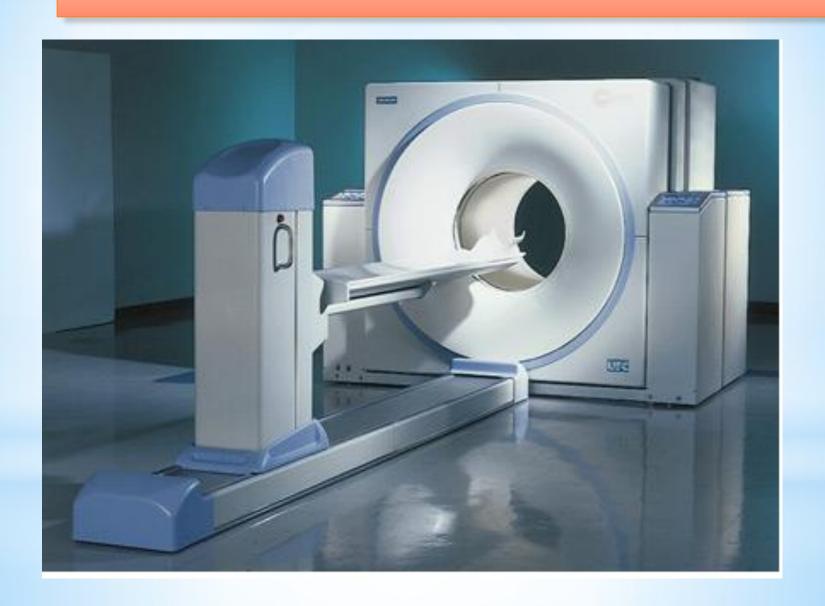
Сцинтиграфия щитовидной железы (99мТс-пертехнетат)

Правая доля. Распределение препарата неравномерное: в средней 1/3 по латеральному контуру определяется очаг гиперфиксации препарата с четким контуром, диаметром 1,5 см. Относительное накопление РФП в доле - 52,6%.


<u>Левая доля</u>. Распределение препарата равномерное. Относительное накопление РФП 47,4%.


Заключение: "горячий" узел правой доли щитовидной железы (аденома).

Позитронно-эмиссионная томография


СУЩНОСТЬ МЕТОДА

- ПЭТ является высокотехнологичным неинвазивным диагностическим методом на основе:
- одновременной регистрации двух гамма-квантов, излучаемых при взаимной аннигиляции позитрона и электрона
- получения на позитронном томографе изображения от введенного пациенту внутривенно РФП с позитрон-излучающим радионуклидом.
- избирательном накоплении РФП в патологических очагах

ПЭТ-томограф Biograph фирмы Simens

Компьютерная (ПЭТ) томография

Достоинства

- Высокое пространственное разрешение
- Короткое время исследования
- Метод послойного получения изображений

Возможности

• Диагностика заболеваний головного мозга, позвоночника и спинного мозга, легких, печени, почек, поджелудочной железы, надпочечников, аорты и легочной артерии и ряда других органов

За создание метода компьютерной томографии присуждена Нобелевская премия (G.Hounsfield, A. Cormac, 1979)

Радионуклиды ПЭТ-томографии

Радионуклид	T _{1/2}	Радионуклид	T _{1/2}
¹¹ C	20,4 мин	⁶⁸ Ga	68,0 мин
13N	9,96 мин	⁷⁵ Br	98 мин
150	2,03 мин	⁷⁶ Br	16,2 ч
18 F	109,8 мин	⁷⁷ Kr	74,7 мин
³⁰ P	2,5 мин	⁸² Rb	1,3 мин
38 K	7,6 мин	⁸⁷ Zr	1,6 ч
⁴⁹ Cr	42,0 мин	⁸⁹ Zr	78,43 ч
⁶² Cu	9,8 мин	⁹² Tc	4,44 мин
⁶⁴ Cu	12,7 ч	⁹³ Tc	2,75 ч
⁶³ Zn	38,1 мин	¹¹⁰ In	69 мин

Места накопления радионуклидов в организме человека

Щитовидная железа ⁹⁹Tc, ^{123,125,131}I,

Легкие ⁸⁵Kr, ^{133,135}Xe, ²²²Rd, ²³³U, ^{238,239}Pu

Печень ¹³⁷Cs, ^{58,60}Co, ²³⁹Np, ^{238,239,241}Pu

Кости ¹⁴С, ³²Р, ⁶⁵Zn, ^{89,90}Sr, ⁹⁰Y, ¹⁴⁰Ва, ¹⁴⁷Рr, ^{154,155}Еr,

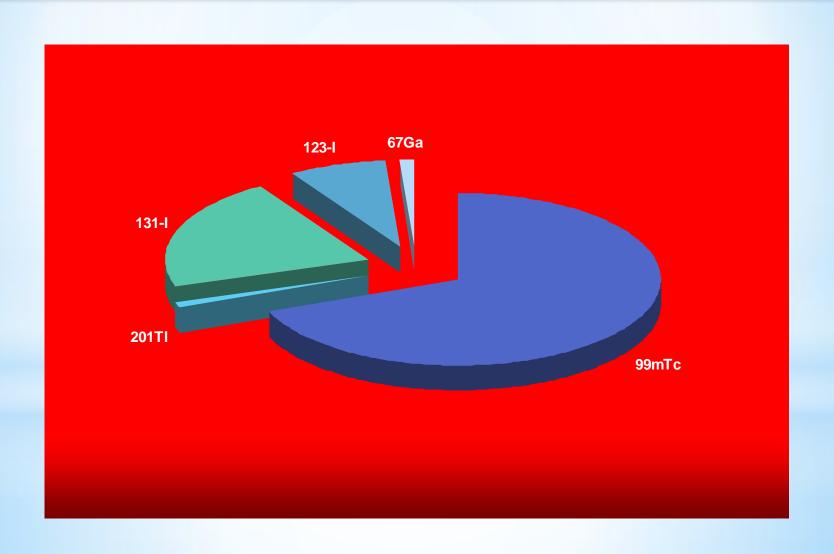
²²⁶Ra, ²³⁴Th, ²³³U, ^{238,239,241}Pu

Селезенка 210**Ро**

Почки ¹⁰⁶Ru, ^{134,137}Сs

Яичники 40,42K, 58,60Co, 65Zn, 85Kr, 90Y, 106Ru, 131I,

^{134,137}Cs, ¹⁴⁰Ba, ²³⁹Pu


Мышцы ^{40,42}K, ^{134,137}Сs, ^{154,155}Еr

Кожа 35**S**

Требования к РФП

- высокое сродство и специфичность к облучаемым клеткам
- низкая скорость метаболизма по отношению к скорости распада радионуклидов
- равномерное распределение радионуклидов облучаемых клетках
- минимальное или отсутствие сродства к здоровым тканям
- минимальная радиационная доза

Структура радиодиагностических исследований по используемым радионуклидам

Способы получения радиоизотопов

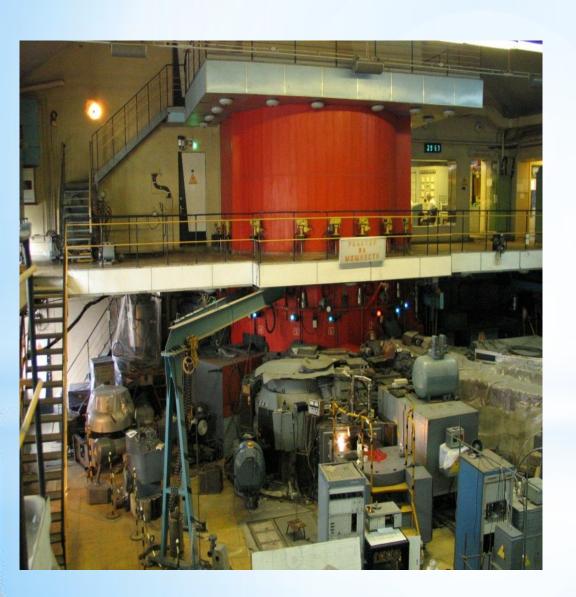
В ядерном реакторе
На ускорителях заряженных частиц
С помощью генераторов радионуклидов

Реакторные радионуклиды (ОФЭКТ, терапия)

Ядерная реакция

Нуклид

(n, γ) ⁵⁹Fe, ⁶³Ni, ⁶⁴Cu, ⁷⁵Se, ⁹⁹Mo, ⁹⁷Ru, ^{125,131}I, ¹⁵³Sm, ¹⁸⁸W, ¹⁹⁸Au, ²⁰³Hg...


(n,p) 32,33P, 69mZn, 89Sr...

 (n,α) ⁴⁷Sc...

(n,'n) ^{117m}Sn...

(n.f) 90Sr, 99Mo, 106Ru, 131I, 133Xe, 137Cs...

Исследовательский реактор ИР-8

Разработаны технологии производства медицинских радионуклидов:

Хром-51,

Иттрий-90,

Молибден-99,

Йод-125, 131

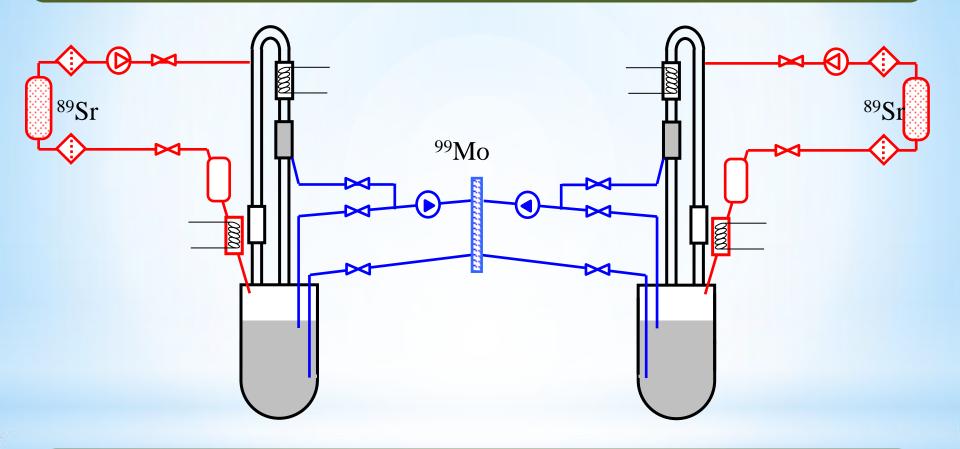
Ксенон-127, 133,

Европий-152,

Лютеций-177,

Рений-186, 188,

Иридий-192,


Ртуть-197,

3олото-198

Исследовательский реактор ПИК

Реакторная установка с растворным топливом ARGUS 100

Мощность: $2x50\kappa BT = 100 \kappa BT$

Топливо: UO_2SO_4 , (20% по ²³⁵U)

Годовая производительность: ⁹⁹Mo ~ 20 000 Ku

 89 Sr ~ 250 Ku

Производство радионуклидов на циклотронах

Циклотрон	Энергия протонов, МэВ	Ядерные реакции	Основные производимые радионуклиды
Уровень I	≤ 10	(p,n), (p,α)	¹¹ C, ¹³ N, ¹⁵ O, ¹⁸ F
Уровень II	≤ 20	(p,n), (p,α)	¹¹ C, ¹³ N, ¹⁵ O, ¹⁸ F, ⁶⁷ Ga, ¹⁰³ Pd, ¹⁰⁹ Cd, ¹¹¹ In, ¹²³ I, ¹²⁴ I, ¹⁸⁶ Re
Уровень III	≤ 45	(p,pn), (p,2n), (p,3n) и др.	²² Na, ³⁸ K, ⁵⁷ Co, ⁶⁷ Ga, ⁶⁸ Ge, ⁷³ Se, ⁷⁵⁻⁷⁷ Br, ⁸¹ Rb (⁸¹ Kr), ¹¹¹ In, ¹²³ I, ²⁰¹ Tl, ²²⁵ Ac
Уровень IV	≤ 200	(p,4n), (p,5n) и др.	²² Na, ²⁸ Mg, ⁵² Fe ⁶⁷ Cu, ⁷² Se (⁷² As), ⁸¹ Rb (⁸¹ Kr), ⁸² Sr (⁸² Rb), ¹⁰³ Pd, ¹⁰⁹ Cd, ^{117m} Sn, ¹²³ I, ¹⁴⁹ Tb, ²⁰¹ Tl

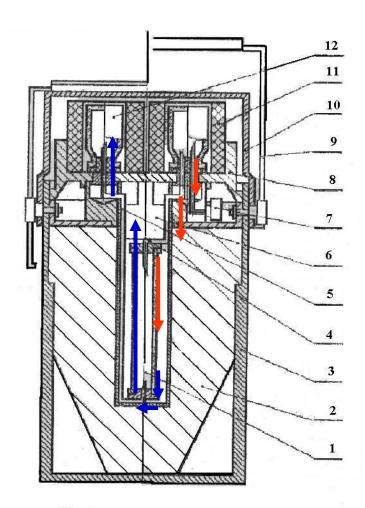
Циклотрон CYCLONE 10/5 (IBA)

Ионы - H⁻, D⁻

Энергия - 10 МэВ (р)

5 M₃B (d)

Ток ионов - 60 мкА (р)

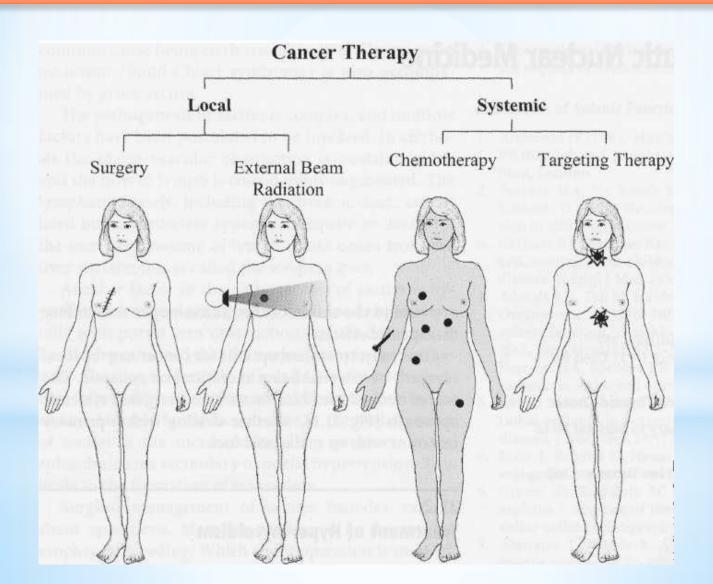

35 MKA (d)

99mTc -генератор

ГТ-2м, ФЭИ Обнинск

Сорбент Оксид Mn/оксид AI Многослойный рН элюата 4,0 – 7,5

Молибден-технециевый генератор представляет собой колонку, заполненную гранулами оксидла алюминия с адсорбированным на нём $^{99}\text{MoO}_4^{2-}$. Его дочерний радионуклид (^{99m}Tc) находится в колонке в виде пертехнетата натрия — Na+(TcO₄) - . Уровень ^{99m}Tc в генераторе зависит как от распада ^{99}Mo и самого Na+ - пертехнетата, так и от интенсивности элюирования последнего для диагностического использования



Общий вид генератора в транспортном положении

- 1- колонка; 2- радиационная защита; 3-корпус генератора;
- 4-линия элюента; 5- линия элюата; 6- пробка защитная; 7- фильтр;
- 8- фланец генератора; 9- транспортная ручка; 10 крышка; 11- вкладыш предохранительный; 12- флакон с бензиловым спиртом

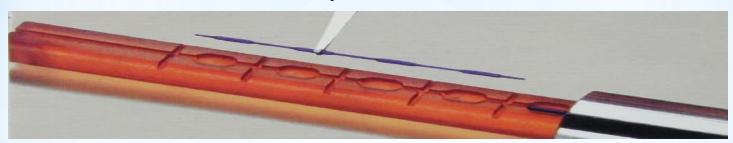
Радионуклидная терапия

Современные методы терапии рака (классическая триада онкологии – хирургическое лечение, химиотерапия, лучевое воздействие + РФП)


Преимущества радионуклидной терапии перед другими видами лучевой терапии

- Высокая толерантность нормальных тканей
- Незначительные побочные эффекты
- Полная реализация энергии β-частиц на расстояниях не более нескольких миллиметров, а α-частиц на расстояниях нескольких десятков микрон
- Возможность формирования в патологических очагах больших поглощенных доз (100-1000 Гр)

Радионуклиды терапевтического назначения


Радионуклид	Область применения	
32,33 P	Р Ревматоидный артрит, костные метастазы	
⁸⁹ Sr	Костные опухоли и метастазы	
90 Y	Заболевания сердца, рак простаты, печени	
¹⁰³ Pd	Опухоли простаты	
131 I	131 I Рак щитовидной железы, толстой кишки, опухоли мозга	
¹⁵³ Sm	Ревматоидный артрит, костные опухоли и метастазы	
¹⁶⁵ Dy	Ревматоидный артрит, рак печени	
¹⁸⁸ Re	Заболевания сердца, костные опухоли и метастазы	
^{212,213} Bi	Радиоиммунотерапия	
²²⁵ Ac	Радиоиммунотерапия	

Микроисточники на основе ¹²⁵I для лечения опухолей предстательной железы

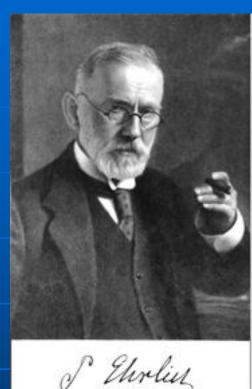
Применение микроисточников ¹²⁵I

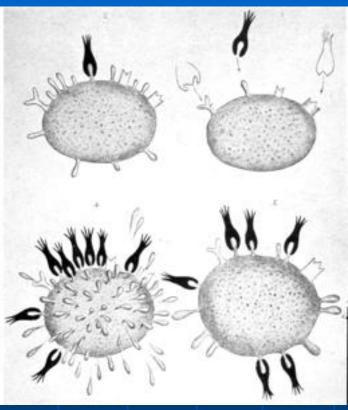
Микроисточники

Введение микроисточников в орган

Рентгенограмма распределения микроисточников в органе

α-излучающие радионуклиды


- Bi-213 Ac-225/Fr-221/At-217/Bi-213 (in vivo генератор)
- Bi-212 Pb-212/Bi-212 (in vivo генератор)
- At-211 Ra-223/Rn-219/Po-215/Pb-211 (in vivo генератор)
- Tb-149


Преимущества

- высокая линейная передача энергия (100 кэВ/мм)
- короткий пробег (60-100 мкм) в окружающих тканях
- 100 раз большая возможность

Адресная доставка радионуклидов. «Таргетная» терапия.

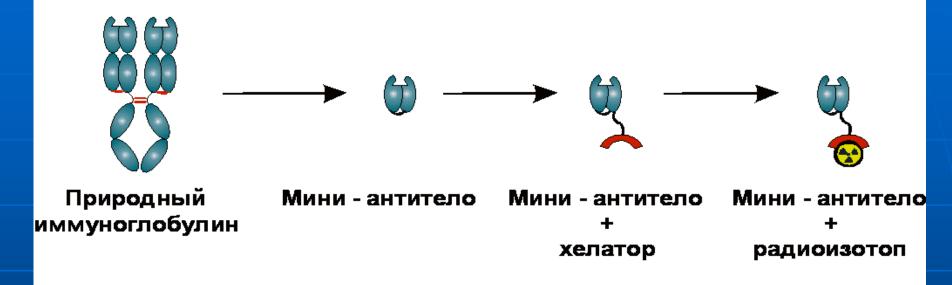
«Волшебная пуля» Пауля Эрлиха

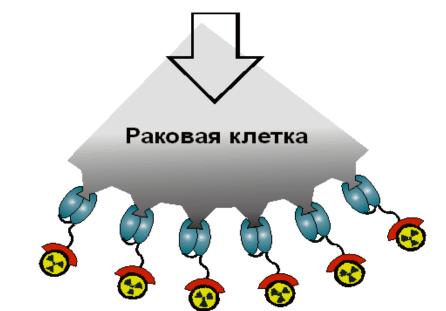
Пауль Эрлих 1854-1915

Нобелевская премия 1907

«Волшебная пуля»

Адресная часть («краситель»)


Связывающая часть


Эффекторная часть (мышьяк)

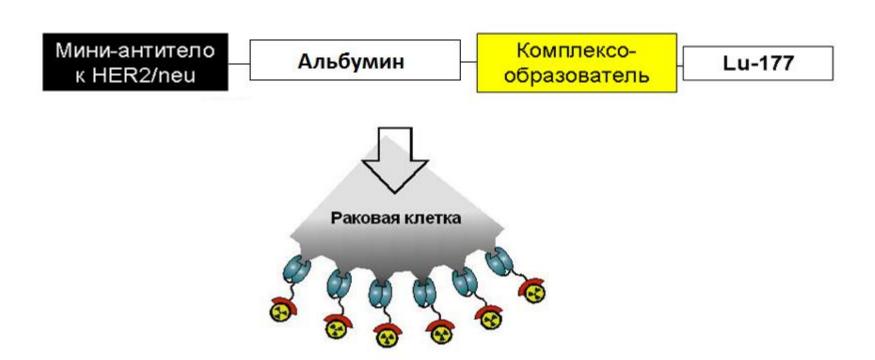
«Препарат 606»

Радиоиммунотерапия злокачественных новообразований с помощью конъюгатов генно-инженерных антител с α-излучателями

Радиоиммуннотерапия с использованием α-частиц

(компьютерная реконструкция)

Антитело, меченное α- излучателем (3-5 нм)



Раковая клетка (20-25 мкм)

Радиоиммунотерапия злокачественных новообразований с помощью конъюгатов генно-инженерных антител с радионуклидами

В основе метода лежит синтез специальных наночастиц, снаряженных антителами к специфическим биомаркерам, характерным преимущественно для злокачественных клеток. Наночастицы, снабженные антителами доставляются в тело человека методом локальной инъекции, либо инъекцией в поток крови и сосредоточиваются в поврежденной раком ткани. При распаде радионуклида Lu-177 испускаются β-частицы, которые обладая высокой начальной энергией разрушают раковую клетку

Соисполнители работ по проекту

Институт биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова РАН

Московский научно-исследовательский онкологический институт им. П.А. Герцена

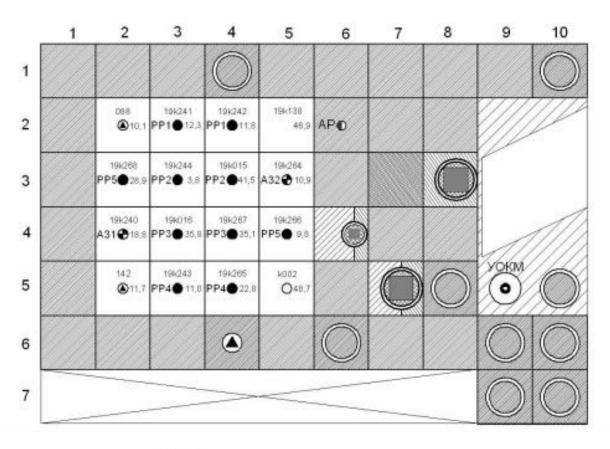
Медицинский радиологический научный центр РАМН

ООО «Центр развития ядерной медицины»

ООО «Технология медицинских полимеров»

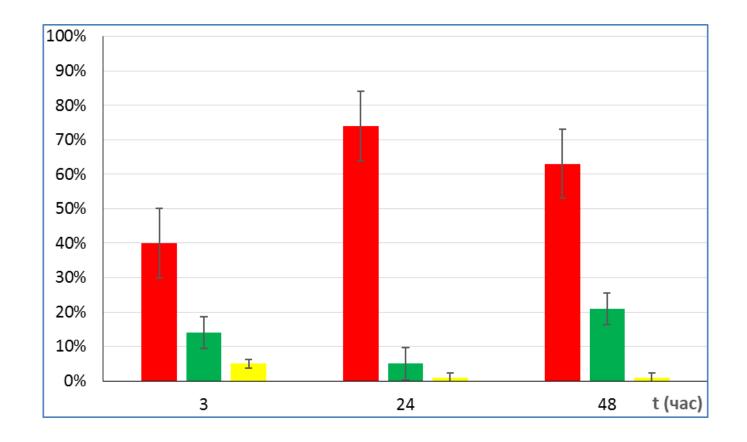
Полный цикл производства радионуклида Lu-177

- получение стабильного изотопа иттербий-177
- изготовление и облучение мишеней;
- переработка облученного сырья;
- измерения активности и контроль качества продукции.

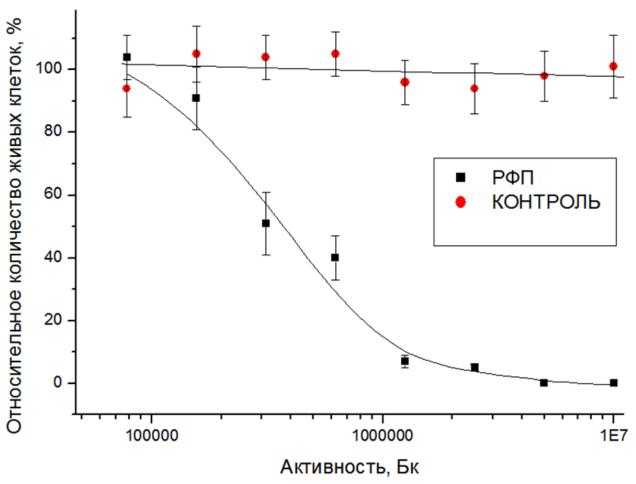


Получение стартового изотопа иттербий-176 на электромагнитном сепараторе С-2

	Концентрация изотопов, % отн.								
Изотоп,	168	170	171	172	173	174	176		
a.e.m									
ε _{enr} , %	<0,05	<0,05	<0,10	<0,05	<0,05	0,12±0,03	99,75±0,10		
N _{enr} , cm ⁻³	1,19E19	1,19E19	2,38E19	1,19E19	1,19E19	2,856E19	2,374E22		
ε _{nat} , %	0,13	3,05	14,3	21,9	16,12	31,8	12,7		
N _{nat} , cm ⁻³	3,09E19	7,25E20	3,40E21	5,21E21	3,83E21	7,56E21	3,02E21		


Расположение ампулы с ¹⁷⁶Yb в реакторе ИР-8

- место размещения АУ


Автоматизированный модуль синтеза

Специфика связывания РФП с клетками

☐- ВР - лунки с HER2-положительными клетками
☐- MP - лунки с HER2-отрицательными клетками
☐- CP - лунки, где клеток не было

Цитотоксическое влияние РФП на рост культуры клеток РМЖ человека клеточной линии ВТ-474 с высокой экспрессией HER2/neu

	177	Сутки после начала воздействия				
Исследуемое	Доза ¹⁷⁷ Lu,	0	3	7	10	
вещество	мкКи/мышь	Объем опухоли, мм³				
«РФП- ¹⁷⁷ Lu»	200	23±1	27±32	85±9	82±14	
«РФП- ¹⁷⁷ Lu»	100	22±1	38±7	55±5	112±26	
MA-ЧСА-DOTA	-	23±4	35±8	100±21	181±33	

Динамика роста опухоли ВТ474 у мышей nude после внутривенного введения РФП и контрольного вещества